Exercise 53

A vehicle has a 20 -gal tank and gets 15 mpg . The number of miles N that can be driven depends on the amount of gas x in the tank.
a. Write a formula that models this situation.
b. Determine the number of miles the vehicle can travel on (i) a full tank of gas and (ii) $3 / 4$ of a tank of gas.
c. Determine the domain and range of the function.
d. Determine how many times the driver had to stop for gas if she has driven a total of 578 mi .

Solution

Part a.
Multiply the mileage per gallon (15) by the amount of gas in the tank (x) to get the number of miles the car can drive.

$$
N(x)=15 x
$$

Part b.

On a full tank of gas, the car can drive

$$
N(20)=15(20)=300 \text { miles } .
$$

In a tank that is $3 / 4$ full, there are

$$
\frac{3}{4}(20)=15 \text { gallons, }
$$

which means the car can drive

$$
N(15)=15(15)=225 \text { miles }
$$

Part c.

Because the tank can hold a minimum of 0 gallons of gas and a maximum of 20 gallons of gas, the domain of $N(x)$ is

$$
\{x \mid 0 \leq x \leq 20\} .
$$

The lowest distance the car can travel is

$$
N(0)=15(0)=0 \text { miles },
$$

and the highest distance the car can travel is

$$
N(20)=15(20)=300 \text { miles } .
$$

Therefore, the range of $N(x)$ is

$$
\{N \mid 0 \leq N \leq 300\} .
$$

Part d.

Assuming the driver started with a full tank of gas and fills the tank completely, she had to have stopped for gas once.

