Exercise 53

A vehicle has a 20-gal tank and gets 15 mpg. The number of miles N that can be driven depends on the amount of gas x in the tank.

- a. Write a formula that models this situation.
- b. Determine the number of miles the vehicle can travel on (i) a full tank of gas and (ii) 3/4 of a tank of gas.
- c. Determine the domain and range of the function.
- d. Determine how many times the driver had to stop for gas if she has driven a total of 578 mi.

Solution

Part a.

Multiply the mileage per gallon (15) by the amount of gas in the tank (x) to get the number of miles the car can drive.

$$N(x) = 15x$$

Part b.

On a full tank of gas, the car can drive

$$N(20) = 15(20) = 300$$
 miles.

In a tank that is 3/4 full, there are

$$\frac{3}{4}(20) = 15 \text{ gallons},$$

which means the car can drive

$$N(15) = 15(15) = 225$$
 miles.

Part c.

Because the tank can hold a minimum of 0 gallons of gas and a maximum of 20 gallons of gas, the domain of N(x) is

$$\{x \mid 0 \le x \le 20\}$$

The lowest distance the car can travel is

$$N(0) = 15(0) = 0$$
 miles,

and the highest distance the car can travel is

N(20) = 15(20) = 300 miles.

Therefore, the range of N(x) is

$$\{N \,|\, 0 \le N \le 300\}.$$

Part d.

Assuming the driver started with a full tank of gas and fills the tank completely, she had to have stopped for gas once.

www.stemjock.com